Đặt \(Q=\dfrac{2011}{2a^2+2b^2+2008}\)
Ta có:
\(\dfrac{a+b}{2}=1=>a+b=2=>a=2-b\)
Thay a=2-b vào Q ta được:
\(Q=\dfrac{2011}{2a^2+2\left(2-a\right)^2+2008}\)
=\(\dfrac{2011}{2a^2+2\left(4-4a+a^2\right)+2008}\)
=\(\dfrac{2011}{2a^2+8-8a+2a^2+2008}\)
=\(\dfrac{2011}{4a^2-8a+2016}\)
=\(\dfrac{2011}{4a^2-8a+4+2012}\)
=\(\dfrac{2011}{4\left(a^2-2a+1\right)+2012}\)
=\(\dfrac{2011}{4\left(a-1\right)^2+2012}\)
Vì \(2a^2+2b^2+2008>0với\forall a,b\)
nên để Q đạt GTLN thì \(2a^2+2b^2+2008\)đạt GTNN hay \(4\left(a-1\right)^2+2012\)đạt GTNN
Mặt khác \(4\left(a-1\right)^2\)\(\ge\)0 với \(\forall\)a
Do đó\(4\left(a-1\right)^2+2012\) \(\ge\)0 với \(\forall\)a
Dấu "=" xảy ra <=> a-1=0<=>a=1
Mà a+b=2=>b=1
Vậy GTN của \(Q=\dfrac{2011}{2a^2+2b^2+2008}\)là \(\dfrac{2011}{2012}\)khi a=b=1
Cách 2 :
Ta có : \(\dfrac{a+b}{2}=1\Rightarrow a+b=2\)
Mặt khác : Với \(\forall a,b\) thì : \(a^2+b^2\ge2ab\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=4\)
\(\Rightarrow2a^2+2b^2+2008\ge2012\)
\(\Rightarrow\dfrac{2011}{2a^2+2b^2+2008}\le\dfrac{2011}{2012}\)
Dấu '' = '' xảy ra khi a = b = 1
Vậy GTLN của biểu thức là \(\dfrac{2011}{2012}\Leftrightarrow a=b=1\)