Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Giúp mk với ạ.
Cho hình chữ nhật ABCD có AB=2.AD. Gọi E; I lần lượt là trung điểm của AB và CD. Nối D và E. Vẽ tia Dx sao cho Dx vuông góc với DE, và Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM=EK. Gọi G là giao điểmcủa DK và EM.
Tính số đo \(\widehat{DBK}\) ?
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.