Để d1 cắt d2 \(\Leftrightarrow\left(m+1\right)\left(m-1\right)\ne-2\Leftrightarrow m^2\ne-1\) (luôn đúng)
Do đó d1 luôn cắt d2
Pt tọa độ giao điểm: \(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m+1\\x+\left(m-1\right)y=m^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x-2\left(m-1\right)y=m^2-1\\2x+2\left(m-1\right)y=2m^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x=3m^2-1\\2x+2\left(m-1\right)y=2m^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3m^2-1}{m^2+1}\\y=\dfrac{2\left(m+1\right)\left(m^2-1\right)}{m^2+1}\end{matrix}\right.\)
Để giao điểm thuộc Oy \(\Leftrightarrow x=0\Rightarrow\dfrac{3m^2-1}{m^2+1}=0\Rightarrow x=\pm\dfrac{1}{\sqrt{3}}\)