Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NGUYỄN MINH HUY

cho 1 tam giác có độ dài 3 cạnh là 1 số nguyên tạo thành 1 cấp số cộng có công sai d>0. Tính độ dài các cạnh của tam giác đó biết rằng bán kính đường tròn nội tiếp của tam giác đó bằng 3

Nguyễn Việt Lâm
23 tháng 3 2021 lúc 19:11

Gọi 3 cạnh tam giác là \(a\) ; \(a+d\) ; \(a+2d\)  (với \(a>d\))

\(p=\dfrac{3a+3d}{2}\) ; \(r^2=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}=9\)

\(\Rightarrow\left(\dfrac{a+3d}{2}\right)\left(\dfrac{a+d}{2}\right)\left(\dfrac{a-d}{2}\right)=\dfrac{27}{2}\left(a+d\right)\)

\(\Leftrightarrow\left(a+3d\right)\left(a-d\right)=108\)

Do \(\left(a+3d\right)+\left(a-d\right)=2\left(a+d\right)\) chẵn ta chỉ cần xét các cặp ước dương cùng tính chẵn lẻ của 108

TH1: \(\left\{{}\begin{matrix}a+3d=54\\a-d=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=15\\d=13\end{matrix}\right.\)

Ba cạnh là: \(\left(15;28;41\right)\)

TH2: \(\left\{{}\begin{matrix}a+3d=18\\a-d=6\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=9\\d=3\end{matrix}\right.\)

Ba cạnh là: \(\left(9;12;15\right)\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Duy Anh
Xem chi tiết
Big City Boy
Xem chi tiết
Park 24
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Duy Anh
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết