a ) Để Phương trình trên xác định thì : \(x^3-8\ne0\Rightarrow x^3\ne8\Rightarrow x\ne2\)
Vậy với \(x\ne2\) thì phương trình trên xác định
b) Ta có \(\dfrac{3x^2+6x+12}{x^3-8}=0\Rightarrow3x^2+6x+12=0\)
\(\Rightarrow3\left(x^2+2x+4\right)=0\Rightarrow3\left(x^2+2x+1+3\right)=0\)
\(\Rightarrow3\left[\left(x+1\right)^2+3\right]=0\)
Ta có \(\left(x+1\right)^2\ge0\forall x\) \(\Rightarrow\left(x+1\right)^2+3\ge3\)
\(\Rightarrow3\left[\left(x+1\right)^2+3\right]\ge3>0\)
Vậy phương trình vô nghiệm