a) \(3x^2-x-10=0\)
<=> \(3x^2-6x+5x-10=0\)
<=> (\(3x^2-6x\))+(\(5x-10\)) = 0
<=> \(3x\left(x-2\right)\)+\(5\left(x-2\right)\) = 0
<=> \(\left(x-2\right)\left(3x+5\right)=0\)
<=> x - 2 =0 hoặc 3x +5 = 0
* x - 2 = 0 * 3x + 5 = 0
<=> x = 2 <=> 3x =-5
<=> x = \(\dfrac{-5}{3}\)
Vậy x = 2 hoặc x = \(\dfrac{-5}{3}\)
b) 5x +2 \(\ge\)0
<=>5x \(\ge\) -2
<=> x \(\ge\)\(\dfrac{-2}{5}\)
Vậy x \(\ge\)\(\dfrac{-2}{5}\)
a) 3x2 - x - 10 = 0
⇔ 3x2 + 5x - 6x - 10 = 0
⇔ x( 3x + 5) - 2( 3x + 5) = 0
⇔ ( x - 2)( 3x + 5) = 0
⇔ x = 2 hoặc : x = \(\dfrac{-5}{3}\)
KL....
b) 5x + 2 ≥ 0
⇔ x ≥ \(\dfrac{-2}{5}\)
KL....