\(x\ge0;x\ne1\)
\(B=\left(\frac{\left(\sqrt{x}+1\right)^2}{x-1}-\frac{\left(\sqrt{x}-1\right)^2}{x-1}-\frac{8\sqrt{x}}{x-1}\right):\left(\frac{-x+\sqrt{x}-3}{x-1}-\frac{\sqrt{x}+1}{x-1}\right)\)
\(B=\left(\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)-8\sqrt{x}}{x-1}\right):\left(\frac{-x-4}{x-1}\right)\)
\(B=\frac{-4\sqrt{x}}{x-1}.\frac{x-1}{-\left(x+4\right)}=\frac{4\sqrt{x}}{x+4}\)
Khi \(x=3+2\sqrt{2}\Rightarrow B=\frac{4\sqrt{3+2\sqrt{2}}}{7+2\sqrt{2}}=\frac{4\left(\sqrt{2}+1\right)}{7+2\sqrt{2}}\)
c/ Ta có: \(B-1=\frac{4\sqrt{x}}{x+4}-1=\frac{4\sqrt{x}-x-4}{x+4}=\frac{-\left(\sqrt{x}-2\right)}{x+4}\)
Do \(x\ge0\Rightarrow x+4>0\Rightarrow\frac{-\left(\sqrt{x}-2\right)}{x+4}\le0\)
\(\Rightarrow B-1\le0\Rightarrow B\le1\)