a) Để \(\sqrt{3x-5}\) có nghĩa thì
3x - 5 \(\ge\) 0 <=> 3x \(\ge\) 5 <=> x \(\ge\) \(\dfrac{5}{3}\)
b) Để \(\sqrt{\dfrac{-3}{4-5x}}\) có nghĩa thì
\(\dfrac{-3}{4-5x}\ge0\)
Do -3 < 0 nên \(\dfrac{-3}{4-5x}< 0\)
Khi và chỉ khi 4 - 5x < 0 <=> x > \(\dfrac{4}{5}\)
c) Để \(\sqrt{x^2-5x+4}\) = \(\sqrt{\left(x^2-x\right)-\left(4x-4\right)}=\sqrt{x\left(x-1\right)-4\left(x-1\right)}=\sqrt{\left(x-1\right)\left(x-4\right)}\) có nghĩa thì
\(\left(x-1\right)\left(x-4\right)\ge0\)
Ta có bảng xét dấu :
=> x \(\le1\) Hoặc x \(\ge4\)
e) Để \(\sqrt{2x-3}\) có nghĩa thì \(2x-3\ge0< =>2x\ge3\Leftrightarrow x\ge\dfrac{3}{2}\)