b) \(\left|x-2018y\right|+\left(y-1\right)^{2018}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-2018y\right|=0\\\left(y-1\right)^{2018}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018y=0\\y-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018y=0\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018.1=0\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018=0\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2018\\y=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=2018\\y=1\end{matrix}\right.\)
c) \(\left|x+5\right|+\left(3y-4\right)^{2018}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+5\right|=0\\\left(3y-4\right)^{2018}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+5=0\\3y-4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\3y=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-5\\y=\dfrac{4}{3}\end{matrix}\right.\)
a, Câu hỏi của Nguyễn Quế Tài - Toán lớp 8 - Học toán với OnlineMath