Câu 1: (P) : \(y=mx^2-2mx-3m-2\) ( m≠ 0)
(d) : y = 3x - 1
(P) có đỉnh I \(\left\{{}\begin{matrix}x_I=\dfrac{-b}{2a}=\dfrac{-\left(-2m\right)}{2m}=1\\y_I=m.1-2m.1-3m-2=-4m-2\end{matrix}\right.\)
⇔ đỉnh I ( 1; -4m - 2 )
Vì I ( 1; -4m - 2) ∈ (d) ⇔ -4m - 2 = 3 . 1 -1 ⇔ m= -1
Vậy m = -1
Câu 2: (P) : y = \(ax^2-4x+c\)
Vì (P) có hoành độ đỉnh bằng -3
⇔ x = -3
⇔ \(\dfrac{-b}{2a}=-3\)
⇔ \(\dfrac{-\left(-4\right)}{2a}=-3\)
⇔ a = \(-\dfrac{2}{3}\)
Mà M ( -2;1) ∈ (P) ⇔ 1 = 4 . \(\left(-\dfrac{2}{3}\right)\)- 4 . (-2) +c
⇔ 1= \(\dfrac{16}{3}\) +c
⇔ c = \(-\dfrac{13}{3}\)
Vậy S = a+c = \(\left(-\dfrac{2}{3}\right)+\left(-\dfrac{13}{3}\right)\)= -5