Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sau Bui Xuan

câu 1 : Thực hiện phép tính :

1. \(\sqrt{0,36.100}\) 2. \(\sqrt[3]{-0,008}\) 3.\(\sqrt{12}+6\sqrt{3}+\sqrt{27}\)

4. \(\dfrac{1-\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}\)

câu 2 : Rút gọn biểu thức

1. \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) ( a,b > 0 )

2.(\(\left(\sqrt{ab}-\sqrt{\dfrac{a}{b}}+\dfrac{1}{a}\sqrt{4ab}+\dfrac{1}{b}\sqrt{\dfrac{b}{a}}\right):\)\(\left(1+\dfrac{2}{a}-\dfrac{1}{b}+\dfrac{1}{ab}\right)\)với a,b > 0

câu 3 : Tìm x

1. \(\sqrt{4x}+\sqrt{\dfrac{x}{4}}+\dfrac{1}{2}\sqrt{49x}=6\)

2. 3x + \(\sqrt{3x-7}\)=7

câu 4 : Cho biểu thức : A = \(\left[1:\left(1-\dfrac{\sqrt{a}}{1+\sqrt{a}}\right)\right].\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)

1. Tìm điều kiện của a để A có nghĩa.

2. Rút gọn biểu thức A.

3. Với giá trị nguyên nào của a thì A có giá trị nguyên?

câu 5 : Chứng tỏ rằng : \(\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}=5\)

Trần Dương
4 tháng 10 2017 lúc 9:10

Câu 1 :

a ) \(\sqrt{0,36.100}=\sqrt{36}=6\)

b ) \(\sqrt[3]{-0,008}=\sqrt[3]{\left(-0,2\right)^3}=-0,2\)

c ) \(\sqrt{12}+6\sqrt{3}+\sqrt{27}=2\sqrt{3}+6\sqrt{3}+3\sqrt{3}=11\sqrt{3}\)

Trần Dương
4 tháng 10 2017 lúc 9:13

Câu 2 :

a ) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}=a-\sqrt{ab}+b\)

Unruly Kid
4 tháng 10 2017 lúc 17:08

Câu 5: Đặt biểu thức là A

Ta có: \(A^3=70-\sqrt{4901}+70+\sqrt{4901}+3\sqrt[3]{\left(70-\sqrt{4901}\right)\left(70+\sqrt{4901}\right)}\left(\sqrt[3]{70-\sqrt{4901}+\sqrt[3]{70+\sqrt{4901}}}\right)\)

\(A^3=140-3A\)(Cái này tự hiểu nhỉ :v)

Tới đây thì phân tích đa thức thành nhân tử và nhận A=5 :v


Các câu hỏi tương tự
Anh Quynh
Xem chi tiết
Đặng Tuyết Đoan
Xem chi tiết
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết
nchdtt
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết
Miền Nguyễn
Xem chi tiết
Ly Ly
Xem chi tiết