c1 ta có vector AB+vecAC+vecBC=vec0
c2ta co vector OA=-vector OB AOB thẳng hàng nhưng ngược chiều=>vector OA+vectorOB=vectorOA-vector OA=vec0
hojk tốt=>>>>>>>>>>>>>>>>>>>>>>>>>
c1 ta có vector AB+vecAC+vecBC=vec0
c2ta co vector OA=-vector OB AOB thẳng hàng nhưng ngược chiều=>vector OA+vectorOB=vectorOA-vector OA=vec0
hojk tốt=>>>>>>>>>>>>>>>>>>>>>>>>>
Cho tứ giác ABCD.gọi M,N,P,Q lần lượt là trung điểm AB,BC,CD,DA.Chứng mình véc tơ NP =véc tơ MQ và véc tơ PQ bằng véc tơ NM
cho (O;R) và dây cung AB. QUa trung điểm I của AB vẽ hai dây cung CD và EF. Các đường thẳng CE và DF cắt AB tại M và N
CMR: véc tơ MI =véc tơ IN
cho tam giác ABC trung tuyến AD. Gọi M là trung điểm AD, xét N ch bởi véc tơ AC bằng 3 lần véc tơ AN . CMR : B , M , N thẳng hàng
Cho ba điểm A,B,C cố định thẳng hàng theo thứ tự đó. Đường tròn tâm O di động luôn đi qua B, C. kẻ qua A các tiếp tuyến AE, AF đến đường tròn tâm O. Gọi E,F là hai tiếp điểm . Gọi I là trung điểm của BC và K là giao của FI với đường tròn tâm O. CMR: véc tơ EK và véc tơ AB cùng phương
cho tam giác ABC vuông tại A có AB=3 AC=4. tính độ dài véc tơ BC giúp mình với ạ:(
Cho tứ giác ABCD có I;J;K;L lần lượt là trung điểm của AB;BC ;CD;DA. Biểu diễn vectơ LJ Theo hai véc tơ JI ; véctơ JK . jup em vs ạ
cho hình chữ nhật ABCD có AB=2a, BC=a\(\sqrt{2}\). Tính độ dài véc tơ\(\overrightarrow{u}=\overrightarrow{AB}-\overrightarrow{BC}\)
1.Cho tam giác ABC,K là trung điểm của AB. Điểm I thoả mãn \(\overrightarrow{IB}\)= 2\(\overrightarrow{IC}\)
a, Biểu diễn \(\overrightarrow{IK}\) theo 2 véc tơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b, J thuộc đoạn thẳng AC sao cho JA= 2JC . Chứng minh I,J,K thẳng hàng
làm họ mik vs
cho tam giác ABC gọi M trên cạnh BC sao cho BM =2/3 BC . Phân tích véc tơ AM theo AB AC