a) Ta có:
\(f\left(x\right)+g\left(x\right)=\left(2x^3-x^2+5\right)+\left(x^2+2x-2x^3-1\right)\)
\(f\left(x\right)+g\left(x\right)=2x^3-x^2+5+x^2+2x-2x^3-1\)
\(f\left(x\right)+g\left(x\right)=2x-4\)
\(f\left(x\right)+g\left(x\right)=2\left(x-2\right)\)
Ta có:
\(f\left(x\right)-g\left(x\right)=\left(2x^3-x^2+5\right)-\left(x^2+2x-2x^3-1\right)\)
\(f\left(x\right)-g\left(x\right)=2x^3-x^2+5-x^2-2x+2x^3+1\)
\(f\left(x\right)-g\left(x\right)=4x^3-2x+6\)
b)
\(f\left(0\right)=2.0^3-0^2+5\)
\(f\left(0\right)=5\)
\(f\left(\dfrac{1}{2}\right)=2.\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^2+5\)
\(f\left(\dfrac{1}{2}\right)=2.\dfrac{1}{8}-\dfrac{1}{4}+5\)
\(f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}-\dfrac{1}{4}+5\)
\(f\left(\dfrac{1}{2}\right)=5\)
\(f\left(-5\right)=2.\left(-5\right)^3-\left(-5\right)^2+5\)
\(f\left(-5\right)=2.\left(-125\right)-25+5\)
\(f\left(-5\right)=-250-25+5\)
\(f\left(-5\right)=-270\)
c) Ta có:
\(f\left(x\right)+g\left(x\right)=0\)
\(\Leftrightarrow2\left(x-2\right)=0\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
Vậy nghiệm cùa f(x) + g(x) là 2