Câu 1: Cho đường tròn tâm O bán kính AB=13 cm. Dây CD có độ dài 12cm vuông góc với OA tại H
a) Tính HC,OH
b) Gọi M, N theo thứ tự là hình chiếu của H trên AC,BC. Chứng minh CM.CA=CN.CB
c) Tính diện tích tứ giác CMHN.
Câu 1: Cho đường tròn tâm O bán kính AB=13 cm. Dây CD có độ dài 12cm vuông góc với OA tại H
a) Tính HC,OH
b) Gọi M, N theo thứ tự là hình chiếu của H trên AC,BC. Chứng minh CM.CA=CN.CB
c) Tính diện tích tứ giác CMHN.
cho hình tròn tâm o bán kính R có đường kính AB dây CD vuông góc AB tại H gọi I,K lần lượt là chân các đg vuông góc kẻ từ H đến AC,BC
A/CM tg ACD cân , tứ giác ACOD là hình thoi
B/tính AC theo R khi H là trung điểm của OA
Cho đường tròn tâm O bán kính R, dây BC khác đường kính, Hai tiếp tuyến của đường tròn (O;R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh $AO \bot BC.$
b) Cho biết $R = 15, BC = 24 (cm).$ Tính AB, OA.
c) Chứng minh BC là tia phân giác $\widehat{ABH}.$
Em cần câu c thôi ạ.
Hình vẽ.
Cho đường tròn (O;R) đường kính AB. Gọi I là dây cung của OA. Vẽ dây CD vuông góc với OA tại I. Lấy điểm E tùy ý trên cung nhỏ BC (E khác B và C). Gọi K là giao điểm của AE và BC. Kẻ KH vuông góc AB (H thuộc AB)
1) Chứng minh rằng BEHK là tứ giác nội tiếp.
2) Chứng minh rằng HK là tia phân giác của EHC và ba điểm E, H, D thẳng hàng.
3) Tìm vị trí của điểm E trên cung nhỏ BC sao cho chu vi ACEB lớn nhất.
Cho đường tròn (O;5cm) có đường kính AB, E thuộc đoạn thẳng AO (E khác A và O). Gọi H là trung điểm của AE, kẻ dây CD vuông góc với AE tại H.
a) Tính OH, CD biết AH=1cm
b) Chứng minh tứ giác ACED là hình thoi.
c) DE và BC cắt nhau tại I. Chứng minh HI là tiếp tuyến của đường tròn đường kính EB
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O, R) có BC là đường kính và AC=R. Kẻ dây AD vuông góc với BC tại H.
1) Tính độ dài các cạnh AB, AH theo R;
2) Chứng minh rằng HA.HD=HB.HC;
3) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;
4) Chứng minh AI là tiếp tuyến của đường tròn (O, R).
Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm, đường cao AH. Vẽ đường tròn tâm O đường kính HC cắt AC tại D.
a) Tính bán kính đường tròn (O) .
b) Gọi I là trung điểm AH. Chứng minh ID là tiếp tuyến của đường tròn (O).
c) Gọi M là trung điểm của đoạn thẳng DC .Đường thẳng ID cắt các tia OM và OB lần lượt tại E và F. Chứng minh: EF.ID = IF.DE .
cho nửa đưởng tròn tâm o đường kính ab. lấy điểm d trên bán kính ob (khác O,B). gọi h là trung điểm của ad.đường vuông góc tại h với ab cắt nửa đường tròn tại c. đường tròn tâm i đường kính bd cắt tiếp bc tại e a) tứ giác acde là hình gì ? b)c/m tam giác ceh cân tại h và he là tiếp tuyến của (I)