Lời giải:
a) Thứ tự tam của tam giác đồng dạng bị sai. Phải là $\triangle DBK\sim \triangle EKC$
Ta có $K$ là giao 2 tia phân giác ngoài góc $B,C$ của tam giác $ABC$ nên $AK$ là tia phân giác trong góc $A$
Tam giác $ADE$ có $AK$ vừa là tia phân giác vừa là đường cao nên là tam giác cân
$\Rightarrow \widehat{ADK}=\widehat{AEK}$ hay $\widehat{BDK}=\widehat{KEC}(1)$
Mặt khác:
$\widehat{CKE}=90^0-\widehat{AKC}=90^0-(180^0-\widehat{KAC}-\widehat{ACK})=\widehat{KAC}+\widehat{ACK}-90^0$
$=\frac{\widehat{A}}{2}+\widehat{C}{2}+\frac{\widehat{A}+\widehat{B}}{2}-90^0$
$=\frac{2\widehat{A}+\widehat{B}+2\widehat{C}-180^0}{2}=\frac{\widehat{A}+\widehat{C}}{2}=\widehat{KBD}(2)$
Từ $(1);(2)$ suy ra $\triangle DBK\sim \triangle EKC$ (g.g)
b)
Từ kết quả tam giác đồng dạng phần a
$\Rightarrow \frac{DK}{EC}=\frac{DB}{EK}$
$\Rightarrow DK.EK=EC.DB$
$\Leftrightarrow \frac{DE}{2}.\frac{DE}{2}=BD.CE$
$\Leftrightarrow DE^2=4BD.CE$ (đpcm)