1/
\(\left(1\right)\Leftrightarrow x-2\sqrt{xy}+\sqrt{xy}-2y=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\sqrt{y}\right)+\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)=\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=4y\end{matrix}\right.\)
2/ thay \(3=x^2+y^2-xy\) vào (1) ta được
\(2x^3-9y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\)
\(\Leftrightarrow2x^3-9y^3=x^3-y^3\)
\(\Leftrightarrow x^3-8y^3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x^2+2xy+4y^2\right)=0\)
\(\Leftrightarrow x=2y\)