\(x^2+y^2+\left(\dfrac{1+xy}{x+y}\right)^2\ge2\)
\(\Leftrightarrow\)(x+y)2+\(\left(\dfrac{1+xy}{x+y}\right)^2\)\(\ge\)2
\(\Leftrightarrow\)\(\dfrac{2\left(x+y\right)^2+\left(1+xy\right)^2}{\left(x+y\right)^2}\ge2 \)
\(\Leftrightarrow\)2(x+y)2+(1+xy)2\(\ge2\left(x+y\right)^2\)