Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạn AC
a) So sánh IB với MI + IA, từ đó chứng minh MA + MB < IB +IA
b) So sánh IB với IC + CB, từ đó chứng minh IB + IA < CA + CB
c) Chứng minh bất đẳng thức MA + MB < CA + CB
1. Lấy 1 điểm M nằm trong tam giác ABC. BM giao AC tại I. C/m:
a) MA+MB < IA+IB
b) MA+MB < CA+CB
2. Cho tam giác ABC cân tại A. Lấy điểm E bất kì thuộc AB. Lấy điểm K thuộc tia đối cuar tia CA, AK+AE = 2.AB. C/m: BC< KE.
( Giải giúp mk nhanh nha các bn! :p )
1. Cho △ABC, M là điểm nằm trong △ABC. Gọi I là giao điểm của BM và AC. Chứng minh rằng:
a) MA + MB < IA + IB
b) MA + MB < AC + BC
2. Cho 2 điểm A, B nằm ngoài đường thẳng d và cùng nằm trên nửa mặt phẳng bờ d. Xác định vị trí điểm M trên đường thẳng d để AM + BM nhỏ nhất.
3. Cho △ABC (AB > AC). Tia phân giác của \(\widehat{BAC}\) cắt BC tại D. M là điểm nằm trên đoạn thẳng AD. Chứng minh rằng MB - MC < AB - AC
Cho hình 5 :
Chứng minh rằng :
MA + MB < IA + IB < CA + CB
Cho tam giác ABC, điểm O nằm trong tam giác, tia BO cắt cạnh AC tại I. a) So sánh OA và IA + IO, từ đó suy ra OA + OB < IA + IB; b) Chứng minh: OA + OB < CA + CB; c) Chứng minh: (AB+AC+BC) /2 < OA + OB + OC < AB + BC + CA
Cho tam giác ABC có AB<BC, trung tuyến BI, trên tia đối của tia IB lấy điểm D sao cho ID=IB. Chứng minh rằng:
a)Tam giác IAB = tam giác ICD.
b)Góc IBA > góc IBC.
c)C/m S ICD=1/2Sabc
làm câu cuối giúp mik với
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
b) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
c) Chứng minh MB + MC < AB + AC
d) Chứng minh MA + MB + MC < AB + BC + AC
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC