Tìm GTLN - GTNN: P = \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Giúp mình với nhé ~ Mình cần gấp lắm!
Bài 1 : Tìm điều kiện xác định của các biểu thức sau:
a, \(\sqrt{\dfrac{-5}{x^2+6}}\) g,\(\sqrt{2x^2-5X}+3\)
b. \(\sqrt{\left(x-1\right)\left(x-3\right)}\) h, \(\dfrac{1}{\sqrt{x^2-5x+6}}\)
c. \(\sqrt{x^2-4}\) k, \(\dfrac{1}{\sqrt{x-3}}+\dfrac{3x}{\sqrt{5-x}}\)
d.\(\sqrt{\dfrac{2-x}{x+3}}\) m,\(\dfrac{1}{\sqrt{2x-x^2}}\)
e.\(\sqrt{x^2-3x}+7\) n, \(\sqrt{6x-1}+\sqrt{x+3}\)
B1: tính : A = \(\sqrt{7+4\sqrt{3}}\) + \(\sqrt{7-4\sqrt{3}}\)
B2: cho P= 3x-\(\sqrt{x^2-10x+25}\)
a, rút gọn P
b, tính P khi x=2
B3: rút gọn : M = \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)với x khác 1
giúp em zới ạ em cảm mơn nhìu nhìu
bài 1: tìm điều kiện xác định với giá trị nào của x thì các biểu thức sau đây xác định
a, \(\sqrt{-2x+3}\)
b, \(\sqrt{3x+4}\)
c, \(\sqrt{1+x\overset{2}{ }}\)
d, \(\sqrt{^{-3}_{3x+5}}\)
e, \(\sqrt{\dfrac{2}{x}}\)
help me :((
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
Rút gọn các biểu thức sau
a,\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
b,\(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)
c,\(C=\left(1-\dfrac{x+3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
d,\(D=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
e,\(E=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Tìm điều kiện xác định :
a) \(\sqrt{2-6x}\)
b) \(\sqrt{3x-12}\)
c) \(\sqrt{x+3}-\sqrt{2x+1}\)
d) \(\dfrac{1}{x^2-25}+\sqrt{x+4}\)
e) \(\sqrt{x^2-8x+7}\)
Giải phương trình:
a) \(\sqrt{5-x}+\sqrt{x-3}=\sqrt{2}\)
b) \(\sqrt{x^2-4}=2\sqrt{x-2}\)
c) \(\sqrt{5x+7}=\sqrt{2x+3}+\sqrt{3x+4}\)
d) \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)
Bài 1: Giải pt
a) \(\sqrt{9x+9}-2\sqrt{\dfrac{x+1}{4}}=4\)
b) \(\sqrt{4x^2-4x+1}=2x-1\)
Bài 2: Cho biểu thức
A=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Tìm ĐKXĐ
b) Rút gọn A
c) So sánh giá trị của A với \(\dfrac{1}{3}\)
Bài 3: Thực hiện phép tính
a) \(\left(\sqrt{32}-2\sqrt{18}\right).\dfrac{\sqrt{2}}{2}\)
b) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{10}{1+\sqrt{6}}\)
Bài 4: Giải pt
a) \(\sqrt{x^2-2x+1}=x+2\)
b) \(\sqrt{3x+2}=\sqrt{x+5}\)
Bài 5: Cho biểu thức
A= \(\left(\dfrac{3\sqrt{x}+x}{x-25}+\dfrac{1}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\)
a) Tìm ĐKXĐ và rút gọn A
b) Chứng minh rằng A<1