Bt1:Tìm GTNN của các biểu thức sau
\(A=3,7+\left|4,3-x\right|\)
\(B=\left|3x+\dfrac{41}{5}\right|-14,2\)
\(C=\left|4x-3y\right|+\left|5y+7,5\right|+17,5\)
Bt2:Tìm GTLN của các biểu thức sau
\(A=5,5-\left|2x-1,5\right|\)
\(B=-\left|10,2-3x\right|-14\)
\(C=4-\left|5x-2\right|-\left|3y+12\right|\)
HELP ME !!!
Bài 1:
a, \(A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu " = " khi \(\left|4,3-x\right|=0\Rightarrow x=4,3\)
Vậy \(MIN_A=3,7\) khi x = 4,3
b, \(B=\left|3x+\dfrac{41}{5}\right|-14,2\ge-14,2\)
Dấu " = " khi \(\left|3x+\dfrac{41}{5}\right|=0\Rightarrow x=\dfrac{-41}{15}\)
Vậy \(MIN_B=-14,2\) khi \(x=\dfrac{-41}{15}\)
c, \(C=\left|4x-3y\right|+\left|5y+7,5\right|\ge17,5\)
( do \(\left|4x-3y\right|+\left|5y+7,5\right|\ge0\) )
Dấu " = " khi \(\left\{{}\begin{matrix}\left|4x-3y\right|=0\\\left|5y+7,5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{8}\\y=-1,5\end{matrix}\right.\)
Vậy \(MIN_C=17,5\) khi \(\left\{{}\begin{matrix}x=\dfrac{-9}{8}\\y=-1,5\end{matrix}\right.\)
Bài 2:
a, \(A=5,5-\left|2x-1,5\right|\le5,5\)
Dấu " = " khi \(\left|2x-1,5\right|=0\Rightarrow x=0,75\)
Vậy \(MIN_A=5,5\) khi x = 0,75
b, c tương tự