x2 + y2 +z2 + 2x - 4y+6z + 14=0
(x2 + 2x +1) + (y2 - 2.y.2 +22) + (z2 + 2.z.3 +32) =0
(x+1)2 + (y-2)2 +(z+3)2 =0
vì (x+1)2 >= 0; (y-2)2>=0 ; (z+3)2>=0
nên x+1=0 và y-2=0 và z+3=0
x=-1 ; y=2 ; z=-3
vậy x+y+z=-2
2 nha bn
chuc bn hoc tot
happy new year![]()
![]()
x2 + y2 +z2 + 2x - 4y+6z + 14=0
(x2 + 2x +1) + (y2 - 2.y.2 +22) + (z2 + 2.z.3 +32) =0
(x+1)2 + (y-2)2 +(z+3)2 =0
vì (x+1)2 >= 0; (y-2)2>=0 ; (z+3)2>=0
nên x+1=0 và y-2=0 và z+3=0
x=-1 ; y=2 ; z=-3
vậy x+y+z=-2
2 nha bn
chuc bn hoc tot
happy new year![]()
![]()
phân tích thành nhân tử:
a, (ab-1)2 +( a+b)2 x3 + 2x2 + 2x + 1;
c, x3 - 4x2 + 12x - 27; x4 - 2x3 + 2x -1
d, x4 +2x3+ 2x2 +2x + 1 x2-2x-4y2-4y
e, x4 + 2x3 - 4x -4 x2(1 - x2) - 4 - 4x2
f, (1 + 2x) (1-2x) - x(x+2)(x-2) x2 + y2 - x2y2 + xy- x - y
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu x2−yzx/(1−yz)=y2−zxy/(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
cho B=\(\frac{x^4-5x^2+4}{x^4-10x^2+9}\)
a) tìm các giá trị của x để B có nghĩa
b)Tìm các giá trị của x để B=0
Rút gọn A=\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) biết x+y+z=0
Phân tích đa thức Thành nhân tử
a) x2 - y2 - 2x - 2y
b) xy + y2
c) x2 + 4xy + 4y2 - 25
tìm giá trị lớn nhất : B= 5-x^2+2x-4y^2-4y
giúp mình nha![]()
I) THỰC HIỆN PHÉP TÍNH
a) 2x(x^2-4y)
b)3x^2(x+3y)
c) -1/2x^2(x-3)
d) (x+6)(2x-7)+x
e) (x-5)(2x+3)+x
II phân tích đa thức thành nhân tử
a) 6x^2+3xy
b) 8x^2-10xy
c) 3x(x-1)-y(1-x)
d) x^2-2xy+y^2-64
e) 2x^2+3x-5
f) 16x-5x^2-3
g) x^2-5x-6
IIITÌM X BIẾT
a)2x+1=0
b) -3x-5=0
c) -6x+7=0
d)(x+6)(2x+1)=0
e)2x^2+7x+3=0
f) (2x-3)(2x+1)=0
g) 2x(x-5)-x(3+2x)=26
h) 5x(x-1)=x-1
IV TÌM GTNN,GTLN.
a) tìm giá trị nhỏ nhất
x^2-6x+10
2x^2-6x
b) tìm giá trị lớn nhất
4x-x^2-5
4x-x^2+3
giúp với chìu ni nộp rùi
tìm y để iểu thức sau có giá trị lớn nhất: 1+4y-y^2
cho a+b=1 tính giá trị biểu thức a^3 + b^3 + 3ab
phân tích đa thức thành nhân tử x^2 - (m+n).x +m.n