Lời giải:
Ta có \(F(x)=\int \sin xe^{\cos x}dx=-\int e^{\cos x}d(\cos x)\)
\(\Leftrightarrow F(x)=-e^{\cos x}+c\)
Mà \(F(0)=e+c=e\Rightarrow c=0\)
\(\Rightarrow F(\pi)=-e^{\cos \pi}=\frac{-1}{e}\). Đáp án B
Lời giải:
Ta có \(F(x)=\int \sin xe^{\cos x}dx=-\int e^{\cos x}d(\cos x)\)
\(\Leftrightarrow F(x)=-e^{\cos x}+c\)
Mà \(F(0)=e+c=e\Rightarrow c=0\)
\(\Rightarrow F(\pi)=-e^{\cos \pi}=\frac{-1}{e}\). Đáp án B
Cho hàm số y = f(x) có đạo hàm cấp hai trên \(\left(0;+\infty\right)\) thỏa mãn: \(2xf'\left(x\right)-f\left(x\right)=x^2\sqrt{x}cosx,\forall x\in\left(0;+\infty\right)\) và \(f\left(4\Pi\right)=0\)
Tính giá trị biểu thức \(f\left(9\Pi\right)\)
Cho hàm số f(x) liên tục trên R Biết cận 0->pi/2 sin2x f(cos^2(x)) dx =1 Khi đó cân 0->1[2f(1-x) -3x^2+5]dx=?
Cho a là một số thực dương. Biết rằng F(x) là 1 nguyên hàm của \(f\left(x\right)=e^x\left(ln\left(ax\right)+\dfrac{1}{x}\right)\) thỏa mãn \(F\left(\dfrac{1}{a}\right)=0\) và \(F\left(2020\right)=e^{2020}\). Tìm a.
Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số : \(f\left(x\right)=\dfrac{1}{1+\sin x}?\)
a) \(F\left(x\right)=1-\cos\left(\dfrac{\pi}{2}+\dfrac{\pi}{4}\right)\)
b) \(G\left(x\right)=2\tan\dfrac{x}{2}\)
c) \(H\left(x\right)=\ln\left(1+\sin x\right)\)
d) \(K\left(x\right)=2\left(1-\dfrac{1}{1+\tan\dfrac{x}{2}}\right)\)
Tìm nguyên hàm của hàm số:
1. \(f\left(x\right)=\left(2x-1\right)e^{\dfrac{1}{x}}\)
2. \(f\left(x\right)=e^{3x}.3^x\)
Tìm nguyên hàm của các hàm số sau :
a) \(f\left(x\right)=\dfrac{x+\sqrt{x}+1}{\sqrt[3]{x}}\)
b) \(f\left(x\right)=\dfrac{2^x-1}{e^x}\)
c) \(f\left(x\right)=\dfrac{1}{\sin^2x.\cos^2x}\)
d) \(f\left(x\right)=\sin5x.\cos3x\)
e) \(f\left(x\right)=\tan^2x\)
g) \(f\left(x\right)=e^{3-2x}\)
h) \(f\left(x\right)=\dfrac{1}{\left(1+x\right)\left(1-2x\right)}\)
Kiểm tra xem hàm số nào là một nguyên hàm của hàm số còn lại trong mỗi cặp số sau :
a) \(f\left(x\right)=\ln\left(x+\sqrt{1+x^2}\right)\) và \(g\left(x\right)=\dfrac{1}{\sqrt{1+x^2}}\)
b) \(f\left(x\right)=e^{\sin x}\cos x\) và \(g\left(x\right)=e^{\sin x}\)
c) \(f\left(x\right)=\sin^2\dfrac{1}{x}\) và \(g\left(x\right)=-\dfrac{1}{x^2}\sin\dfrac{2}{x}\)
d) \(f\left(x\right)=\dfrac{x-1}{\sqrt{x^2-2x+2}}\) và \(g\left(x\right)=\sqrt{x^2-2x+2}\)
e) \(f\left(x\right)=x^2e^{\dfrac{1}{x}}\) và \(g\left(x\right)=\left(2x-2\right)e^{\dfrac{1}{x}}\)
Tính f(x)=\(\int e^2dx\), trong đó e là hằng số và e\(\approx\)2,718
A. f(x)= \(\dfrac{e^2x^2}{2}+C\)
B. f(x) =\(\dfrac{e^3}{3}+C\)
C. f(x) = e\(^2\)x+C
D. f(x) = 2ex + C
cho hàm số f(x) = \(\dfrac{\left(sinx+2x\right)\left[\left(x^2+1\right)sinx-x\left(cosx+2\right)\right]}{\left(cosx+2\right)^2\sqrt{\left(X^2+1\right)^3}}\). Biết F(x) là một nguyên hàm của f(x) và F(0)=2021. Tính giá trị biểu thức T=F(-1) + F(1).