Có: \(a+b=a^2+b^2=a^3+b^3\)
\(\Rightarrow a+b+a^3+b^2=2\left(a^2+b^2\right)\)
\(\Rightarrow\left(a-2a^2+a^3\right)+\left(b-2b^2+b^3\right)=0\)
\(\Rightarrow a\left(1-2a+a^2\right)+b\left(1-2b+b^2\right)=0\)
\(\Rightarrow a\left(1-a\right)^2+b\left(1-b\right)^2=0\) (1)
Vì: \(a>0;\left(1-a\right)^2\ge0\)
=> \(a\left(1-a\right)^2\ge0\)
Vì: \(b>0;\left(1-b\right)^2\ge0\)
=> \(b\left(1-b\right)^2\ge0\)
Do đó:
\(\left(1\right)\Leftrightarrow\begin{cases}a\left(1-a\right)^2=0\\b\left(1-b\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}1-a=0\\1-b=0\end{cases}\)\(\Leftrightarrow a=b=1\)
Khi đó; \(a^{2015}+b^{2015}=1^{2015}+1^{2015}=2\)