Vì a>b>0 áp dụng BĐT Cauchy ta có
\(\dfrac{a^2+b^2}{a-b}=\dfrac{a^2-2ab+b^2+2ab}{a-b}=\dfrac{\left(a-b\right)^2+2}{a-b}\)
\(=\left(a-b\right)+\dfrac{2}{a-b}\ge2\sqrt{\left(a-b\right).\dfrac{2}{a-b}}=2\sqrt{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-b=\dfrac{2}{a-b}\\ab=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)