tính giá trị biểu thức
1) A = \(\frac{15\sqrt{x}-11}{x-2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) tại \(x=3-2\sqrt{2}\)
2) \(B=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\) tại \(x=7-2\sqrt{6}\)
3) \(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\) tại \(x=7-4\sqrt{3}\)
\(Q=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+x}+\frac{8\sqrt{x}}{9x-1}\right)\div\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(A=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a/\(2\sqrt{60}-15\sqrt{\frac{3}{5}}+\left(\sqrt{3}-\sqrt{5}\right)\sqrt{3}-\frac{4\sqrt{5}}{\sqrt{3}-\sqrt{7}}\)
cho biểu thức
P=
\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\left(x\ge0;x\ne9\right)\)
a/ rút gọn P
b/ Tìm tất cả các giá trị của x để P<\(-\frac{1}{3}\)
Cho P =\(\frac{\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)}{\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)}\)
a, Rút gọn p
b, Tính giá trị P biết x=\(\frac{3-\sqrt{x}}{2}\)
c, Tìm x để P đạt GTNN
Rút gọn:
a,\(\frac{3+\sqrt{3}}{1+\sqrt{3}}\)
b,\(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-\sqrt{2}}\)
c,\(\frac{y-2\sqrt{y}}{\sqrt{y}-2}\)
d,\(\frac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
e,\(\frac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
g,\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
Bài 1 :
a, \(\sqrt{45}-2\sqrt{\frac{4}{3}}+\frac{\sqrt{18}}{\sqrt{6}}-\sqrt{5\frac{1}{3}}\)
b, (\(\sqrt{7}-\sqrt{3}\) )2 +\(\sqrt{84}\)
Bài 2 : Chứng minh đẳng thức
\(\left(\frac{\sqrt{21}-\sqrt{7}}{\sqrt{3}-1}\frac{\sqrt{15}+\sqrt{3}}{\sqrt{5}+1}\right):\frac{1}{\sqrt{7}+\sqrt{3}}=4\)
Bài 3: Cho biểu thức : A=\(\left(1-\frac{2\sqrt{2a}}{a+2}\right):\left(\frac{1}{\left(\sqrt{a}+2\right)}-\frac{2\sqrt{2a}}{\left(a+2\right)\left(\sqrt{a}+2\right)}\right)\)
a. Rút gọn A
b. Tính A khi a =2009-2\(\sqrt{2008}\)
Bài 4 : Cho A =\(\left(1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\) điều kiện x>0 , x≠1,x≠4
a.Rút gọn
b. Tìm x để A =\(\frac{1}{2}\)
Bài 1 : Cho A=\(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
B=\(\frac{1}{x+\sqrt{x}}-\frac{1}{x-\sqrt{x}}+\frac{2\sqrt{x}}{x-1}\)
a) Rút gọn A và B
b) tìm x để A > B
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)