a) ĐKXĐ: \(x\ge0,x\ne1\)
b) B= \(\left[\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
= \(\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\frac{1}{x-1}\)
Vậy B= \(\frac{1}{x-1}\)