\(\left(1+\dfrac{2}{2.3}\right).\left(1+\dfrac{2}{3.4}\right).....\left(1+\dfrac{2}{n\left(n+1\right)}\right)\)
1) Tìm 2 số nguyên tố x, y sao cho: \(x^2-6y^2=1\)
2) Cho \(B=1.2.3...2012.\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)
CMR: B chia hết cho 2013
Tìm số tự nhiên x biết :
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right).x=\dfrac{23}{45}\)
Tính
A=\(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
B=\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)........\left(1-\dfrac{1}{10^2}\right)\)
C=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+..........+\dfrac{1}{2^{2016}}\)
Giúp mk nha!Cảm ơn rất nhìu!
Chứng minh rằng :
\(\dfrac{2}{n\left(n+2\right)}=\dfrac{1}{n}-\dfrac{1}{n+2}\)
Chứng minh rằng :
a)\(\dfrac{1}{x}\)-\(\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)
b)\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\)
c)\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
Chứng minh rằng với mọi số tự nhiên khác 0 ta đều có :
a) \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right).\left(3n+2\right)}=\dfrac{n}{6n+4}\)
b) \(\dfrac{5}{3.7}+\dfrac{5}{7.11}+\dfrac{5}{11.15}+...+\dfrac{5}{\left(4n-1\right).\left(4n+3\right)}=\dfrac{5n}{4n+3}\)
giúp mk với
Tìm số tự nhiên x
a) \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-....-\dfrac{1}{120}=\dfrac{5}{8}\)
b)\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+....+\dfrac{1}{\left(2x+1\right).\left(2x+3\right)}=\dfrac{15}{93}\)
Tìm số nguyên x , biết rằng
\(4\dfrac{1}{3}\)\(.\left(\dfrac{1}{6}-\dfrac{1}{2}\right)\)_< x _< \(\dfrac{2}{3}.\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)