Lời giải:
a) Để $D$ có nghĩa thì:
\(\left\{\begin{matrix} 2-x\neq 0\\ 2+x\neq 0\\ x^2-4\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2-x\neq 0\\ 2+x\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq -2\\ x\neq 3\end{matrix}\right.\)
b)
\(D=\left[\frac{(2+x)^2-(2-x)^2}{(2-x)(2+x)}+\frac{4x^2}{4-x^2}\right].\frac{2-x}{x-3}=\left[\frac{8x}{(2-x)(2+x)}+\frac{4x^2}{(2-x)(2+x)}\right].\frac{2-x}{x-3}\)
\(=\frac{4x(2+x)}{(2-x)(2+x)}.\frac{2-x}{x-3}=\frac{4x}{x-3}\)
c) Với $x\neq \pm 2; x\neq 3$
$D=0\Leftrightarrow \frac{4x}{x-3}=0\Leftrightarrow x=0$ (thỏa mãn)
d)
$|2x-1|=5\Rightarrow 2x-1=\pm 5\Rightarrow x=-2$ hoặc $x=3$ (đều vi phạm ĐKXĐ ở phần a)
Do đó không tồn tại $D$ tại $|2x-1|=5$