Bài 1: Cho hình vẽ, biết \(n\perp AB\) tại B, \(\widehat{F_1}\)=\(120^o\).
a) Chứng tỏ m//n.
b) Tính \(\widehat{E_1}\).
c) Chứng tỏ \(m\perp AB\). Vì sao?
Bài 1: Cho hình vẽ, biết m\(\perp\)AB tại A, \(n\perp AB\) tại B, \(\widehat{F_1}\)=\(120^o\).
a) Chứng tỏ m//n.
b) Tính \(\widehat{E_1}\).
Giúp mik làm bài này với ạ. Mik cảm ơn!!!
Bài 4:Cho hình vẽ, biết a\(\perp\)MP tại M, \(b\perp NQ\) tại Q, \(\widehat{N_1}\)=\(65^O\).
a) Chứng tỏ a//b.
b) Tính \(\widehat{M_1}\)=?
Cho tam giác ABC,\(\widehat{A}\)=90\(^O\).Trên nửa mặt phẳng không chứa C ,có bờ AB .Vẽ tia Bx sao cho BA là phân giác \(\widehat{CBx}\).Tia này cắt AC ở D.Qua C kẻ đường thẳng vuông góc với AC cắt BD tại E.Tia phân giác của\(\widehat{CBE}\) cắt CE tại F
CMR:a,\(\widehat{BCE}\)=\(\widehat{BEC}\)
b,Tổng số đo 3 góc của tam giác ABC =180\(^o\)
c,BF\(\perp\)CE
Mọi người ơi giúp mình với!Các bạn vẽ hình giúp mình với nha!
Cho hình bs 14 :

(A) \(\widehat{N}_1\) và \(\widehat{M}_1\) là hai góc so le trong
(B) \(\widehat{N}_2\) và \(\widehat{M}_2\) là hai góc đồng vị
(C) \(\widehat{N}_3\) và \(\widehat{M}_3\) là hai góc so le trong
(D) \(\widehat{N}_4\) và \(\widehat{M}_1\) là hai góc đồng vị
Hãy chọn phương án đúng ?
Bài 1 :Cho \(\Delta\)ABC . Trên cạnh AB lấy M , trên nửa mặt phẳng bờ AB chứa C , vẽ tia Mx sao cho \(\widehat{AMB}\)
a) Chứng minh rằng : Mx // BC và Mx cắt AC
b) Gọi D là giao điểm của Mx với AC . Lấy N nằm giữa C và D . Trên nửa mặt phẳng bờ AC khi chứa điểm B . Vẽ tia Ny sao cho \(\widehat{CNY}\)=\(\widehat{C}\) . Chứng minh rằng : Mx // Ny
1)Cho \(\widehat{AOB=50^0}\)gọi OC là tia phân giác của \(\widehat{AOB}\).Vẽ tia OE là tia đối của tia OA.Vẽ tia OD vuông góc với OC(tia nằm trong \(\widehat{BOE}\)).Hãy chứng tỏ rằng tiaOD là tia phân giác của\(\widehat{BOE}\)?
2)Cho \(\widehat{AOB=130^0}\) trong\(\widehat{AOB}\) vẽ các tia OC ,OD sao cho OC \(\perp OA\), \(OD\perp OB\).Tính \(\widehat{COD}\)?
B1.Cho hình sau và chỉ ra (dấu * là biểu thị cho độ nhé!)
+ Các cặp góc bằng nhau có trong hình.
+ Tìm số đo của các góc : \(\widehat{ABC}\) và \(\widehat{AED}\) .
B2. Vẽ tam giác ABC. Qua điểm A vẽ đường thẳng mn song song với đường thăng bc.
a) So sánh các góc \(\widehat{B_1}\), \(\widehat{C_1}\), \(\widehat{A_1}\) với 180*.
b) So sánh các góc \(\widehat{C_1}\), \(\widehat{A_3}\).
c) So sánh tổng số đo của các góc \(\widehat{B_1}\) , \(\widehat{C_1}\) , \(\widehat{A_1}\) với 180*.
Cho hình vẽ. Chứng minh rằng \(\widehat{xAc}\)= \(\widehat{B}+\widehat{C}\)