Cho A =\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{16}\) . chứng minh rằng: A không là số tự nhiên
Chứng minh rằng :
\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)
Cho \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
Chứng minh rằng S <\(\dfrac{1}{2}\)
Cho A=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
Chứng minh rằng 0,2<0,4.
Chứng minh \(\dfrac{1}{5}\)< \(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)+......+\(\dfrac{1}{99^2}\)+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{3}\)
Chứng minh rằng:\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{121}-\dfrac{1}{122}+\dfrac{1}{123}=\dfrac{1}{62}+\dfrac{1}{63}+...+\dfrac{1}{122}+\dfrac{1}{123}\)
Chứng minh rằng :
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\)
Chứng minh rằng : \(\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\)
Cho dãy số: \(1\dfrac{1}{3};1\dfrac{1}{3^2};1\dfrac{1}{3^4};1\dfrac{1}{3^8};1\dfrac{1}{3^{16}};........\)
a) Tìm số hạng tổng quát của dãy
b) Goi A là tích của 11 số hạng đầu tiên của dãy . Chứng minh \(\dfrac{1}{3-2A}\)là số tự nhiên
c) Tìm chư số tận cùng của B=\(\dfrac{3}{3-2A}\)