Ta có: \(\widehat{AOx}=\frac{1}{2}\widehat{AOB}\)
\(\widehat{AOy}=\frac{1}{2}\widehat{AOC}\)
\(\Rightarrow\widehat{xOy}=\widehat{AOx}+\widehat{AOy}=\frac{1}{2}\widehat{AOB}+\frac{1}{2}\widehat{AOC}=\frac{1}{2}\left(\widehat{AOB}+\widehat{AOC}\right)=\frac{1}{2}\widehat{BOC}=\frac{1}{2}.180^o=90^o\)
Hay \(\widehat{xOy}\) vuông (ĐPCM)
Ta có:
\(\widehat{xOy}=\widehat{xOA}+\widehat{yOA}=\frac{1}{2}\widehat{AOB}+\frac{1}{2}\widehat{AOC}=\frac{1}{2}\left(\widehat{AOB}+\widehat{AOC}\right)=\frac{1}{2}.180^0=90^0\)
Vậy: \(\widehat{xOy}=90^0.\)