a: góc BFC=góc BEC=90 độ
=>BCEF nội tiếp
góc AEH+góc AFH=180 dộ
=>AEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
=>BK//CH
góc ACK=1/2*sđ cung AK=90 độ
=>CK//BH
=>BHCK là hình bình hành
=>H đối xứng K qua M
a: góc BFC=góc BEC=90 độ
=>BCEF nội tiếp
góc AEH+góc AFH=180 dộ
=>AEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
=>BK//CH
góc ACK=1/2*sđ cung AK=90 độ
=>CK//BH
=>BHCK là hình bình hành
=>H đối xứng K qua M
cho tam giác ABC nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau
tại H. Chứng minh rằng:
4) Tứ giác BCDE nội tiếp đường tròn.
5) Chứng minh ED . CH = BC . DH.
6) Kẻ đường kính AK, từ điểm O kẻ OM vuông góc với BC( M BC ). Chứng minh ba điểm H, M, K
thẳng hàng.
giúp mình gấp cảm ơn rất nhiều
cho tam giác nhọn ABC nội tiếp (O), AB > BC. 2 tiếp tuyến của đường tròn tại A và B cắt nhau tại M. qua M cái đường thẳng song song với đường thẳng BC tại N a, CMR: tg MAOB nội tiếp b, CMR: góc ACB= góc MOB. Từ đỏ chứng minh tam giác MNO là tam giác vuông
Cho ∆MAB có 3 góc nhọn. Vẽ đường tròn tâm O đường kính AB cắt MA và MB lần lượt tại D và C. Gọi H là giao điểm của AC và BD. a) Chứng minh: ∆ ABC vuông và MH AB b) Gọi P, N, Q theo thứ tự là chân các đường vuông góc kẻ từ A, O, B đến CD. Chứng minh: PD = CQ c) Gọi I là trung điểm của MH. Chứng minh: IC là tiếp tuyến của (O)
Giải nhanh giúp e với ạ
cho đường tròn tâm o bán kính r , từ điểm a nằm ngoài đường tròn vẽ hai tiếp tuyến am , an với đường tròn . i là giao điểm mn và oa . vẽ đường kính mb của đường tròn , qua o kẻ dường thẳng vuông góc với ab tại h , cắt mn tại c , chứng minh bc là tiếp tuyến của đường tròn tâm o , bán kính r
2.Cho tam giác ABC vuông tại A, đường cao AH . Biết AB = 6cm AC = 8cm . a) Tính BC; BH và số đo góc C (số đo góc làm tròn đến độ) b) Gọi E, F là hình chiếu của H trên AB, AC . Chứng minh AE.BE+AF. CF = A * H ^ 2 c) Gọi I là trung điểm của BC, AI cắt EF tại O. Chứng minh: 1/(O * A ^ 2) = 1/(A * E ^ 2) + 1/(A * F ^ 2)
Cho đường tròn (O), điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AB,AC với đường tròn(B, C là các tiếp điểm. Kẻ đường kính BD. Tiếp tuyến của đường tròn (O) tại D cắt đường thẳng BC tại E. Chứng minh tam giác OCE đồng dạng với tam giác ACD