cho đường tròn tâm o bán kính r , từ điểm a nằm ngoài đường tròn vẽ hai tiếp tuyến am , an với đường tròn . i là giao điểm mn và oa . vẽ đường kính mb của đường tròn , qua o kẻ dường thẳng vuông góc với ab tại h , cắt mn tại c , chứng minh bc là tiếp tuyến của đường tròn tâm o , bán kính r
cho tam giác ABC nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau
tại H. Chứng minh rằng:
4) Tứ giác BCDE nội tiếp đường tròn.
5) Chứng minh ED . CH = BC . DH.
6) Kẻ đường kính AK, từ điểm O kẻ OM vuông góc với BC( M BC ). Chứng minh ba điểm H, M, K
thẳng hàng.
giúp mình gấp cảm ơn rất nhiều
cho tam giác nhọn ABC nội tiếp (O), AB > BC. 2 tiếp tuyến của đường tròn tại A và B cắt nhau tại M. qua M cái đường thẳng song song với đường thẳng BC tại N a, CMR: tg MAOB nội tiếp b, CMR: góc ACB= góc MOB. Từ đỏ chứng minh tam giác MNO là tam giác vuông
cho đường tròn tâm O ,đường kính AB .Trên tia tiếp tuyến Ax của đường trong (O) lấy điểm M(M khác A), kể tiếp tuyến MC với đường tròn (O)(C là tiếp điểm).(yêu cầu vẽ hình)
a)Chứng minh bốn điểm O,A,M,C cùng thuộc 1 đường tròn
b)chứng minh OM\(\perp\)AC tại I
c)Tia BM cắt đường tròn (O) tại D (D ≠ B).chứng minh :MA2 =MI.MO=MD.MB
d)chứng minh:góc OIB = góc OBM\(\)
Câu 6: Cho đường tròn (O, 4cm) từ một điểm M cách ( 8cm vẽ hai tiếp tuyến MA và MB của đường tròn tâm O ( A ,B in(O)) . Gọi H là giao điểm của OM và AB.
6.1 Tính độ dài của đoạn thẳng OH, số đo góc AMO
6.2 Chứng minh tam giác ABM là tam giác đều.
6.3 Vẽ Al vuông góc với BM tại I. Chứng minh 4 điểm A, H, I, M cùng thuộc một đường tròn.
Cho ∆MAB có 3 góc nhọn. Vẽ đường tròn tâm O đường kính AB cắt MA và MB lần lượt tại D và C. Gọi H là giao điểm của AC và BD. a) Chứng minh: ∆ ABC vuông và MH AB b) Gọi P, N, Q theo thứ tự là chân các đường vuông góc kẻ từ A, O, B đến CD. Chứng minh: PD = CQ c) Gọi I là trung điểm của MH. Chứng minh: IC là tiếp tuyến của (O)
Giải nhanh giúp e với ạ