Bài 3. Cho biểu thức : B = 1/(2sqrt(x) - 2) - 1/(2sqrt(x) + 2) + (sqrt(x))/(1 - x) A = (1 - (5 + sqrt(5))/(1 + sqrt(5)))((5 - sqrt(5))/(1 - sqrt(5)) - 1)
a) Tính A
b) Tìm ĐKXĐ rồi rút gọn biểu thức B;
c) Tính giá trị của B với x = 9
d) Tìm giá trị của x để |B| = A
Cho biểu thức A = \(\dfrac{2}{\sqrt{x}-3}\) + \(\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
a, Rút gọn biểu thức A
b, Tìm x thuộc Z để biểu thức A nhận giá trị nguyên
Cho biều thức P=\(\dfrac{x-2\sqrt{x}}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\dfrac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\)
a) Rút gọn biểu thức P
b) Tìm các giá trị x để P nhận giá trị nguyên
Cho biểu thức A= \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}\)+\(\dfrac{3\sqrt{x}-2}{1-\sqrt[]{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a, Rút gọc P
b, tìm x để P nhận giá trị nguyên
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
Cho biểu thức:
A=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Tìm ĐKXĐ và rút gọn A
b) Tính giá trị của A khi x=\(3-2\sqrt{2}\)
Cho biểu thức
P =\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
a) Tìm ĐKXĐ và rút gọn P
b) Tìm các giá trị của x để P>0
c) Tìm x để P =6
Cho P = (\(\dfrac{1}{\sqrt{x}-1 }\) - \(\dfrac{1}{\sqrt{x}}\))(\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\))
a. Tìm đkxđ và rút gọn P
b. Tìm x để P = \(\dfrac{1}{4}\)
cho biểu thức \(P=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
a)Tìm x để biết P có nghĩa và rút gọn P
b)với giá trị nào của x thì P<1