a) ĐKXĐ: x\(\ne\)2
Để A có giá trị nguyên thì \(5-x⋮x-2\)
\(\Leftrightarrow-\left(x-5\right)⋮x-2\)
\(\Leftrightarrow-\left(x-2-3\right)⋮x-2\)
\(\Leftrightarrow-\left(x-2\right)+3⋮x-2\)
mà \(-\left(x-2\right)⋮x-2\)
nên \(3⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(3\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)(tm)
Vậy: \(x\in\left\{3;1;5;-1\right\}\)
b) Ta có: \(A=\frac{5-x}{x-2}\)
\(=\frac{-\left(x-5\right)}{x-2}=\frac{-\left(x-2-3\right)}{x-2}=\frac{-\left(x-2\right)}{x-2}+\frac{3}{x-2}\)
\(=-1+\frac{3}{x-2}\ge0\forall x\)
Dấu '=' xảy ra khi x-2=3
hay x=5
Vậy: Giá trị nhỏ nhất của biểu thức \(A=\frac{5-x}{x-2}\) là 0 khi x=5