a: Xét ΔNMA và ΔNPB có
NM=NP
\(\widehat{NMA}=\widehat{NPB}\)
MA=PB
Do đó: ΔNMA=ΔNPB
Suy ra: NA=NB
hay ΔNAB cân tại N
b: Xét ΔNHM vuông tại H và ΔNKP vuông tại K có
NM=NP
\(\widehat{HNM}=\widehat{KNP}\)
Do đó:ΔNHM=ΔNKP
Suy ra: MH=PK
a: Xét ΔNMA và ΔNPB có
NM=NP
\(\widehat{NMA}=\widehat{NPB}\)
MA=PB
Do đó: ΔNMA=ΔNPB
Suy ra: NA=NB
hay ΔNAB cân tại N
b: Xét ΔNHM vuông tại H và ΔNKP vuông tại K có
NM=NP
\(\widehat{HNM}=\widehat{KNP}\)
Do đó:ΔNHM=ΔNKP
Suy ra: MH=PK
Bài 6: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh ΔAMN là tam giác cân.
b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.
c) Gọi O là giao điểm của BH và CK. Chứng minh ΔOBC cân.
d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.
Bài 2. Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC.
a) Chứng minh ΔAHB = ΔAHC.
b) Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh rằng ΔADE cân.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, CK vuông góc với AE. Chứng minh rằng
a) Tam giác BHD = tam giác CKE b) Tam giác AHB = tam giác AKC c) BC song song với HK
Cho tam giác ABC (AB<AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a) Chứng minh tam giác MAB=tam giác MDC.
b) Kẻ AH vuông góc với BC tại H, kẻ DK vuông góc với BC tại K. Chứng minh: AH=DK.
c) Trên các đoạn thẳng AB và CD lần lượt lấy điểm E và F sao cho AE=DF. Chứng minh: 3 điểm E, M, F thẳng hàng.
Mai mình cần ý, vẽ hình giúp mình, mình cảm ơn ạa
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ \(BH\perp AM\left(H\in AM\right)\), kẻ \(CK\perp AN\left(K\in AN\right)\). Chứng minh rằng BH = CK
c) Chứng minh rằng AH = AK
d) Khi \(\widehat{BAC}=60^0\) và BM = CN = BC, hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC ?
Cho tam giác ABC có AB < AC. Lấy E thuộc AC sao cho AE=AB. Trên tia đối của tia BA lấy điểm D sao cho BD=EC.
a) Chứng minh rằng tam giác ADC cân tại A.
b) Kẻ AH vuông góc với BE tại H, AH cắt DC tại K. Chứng minh AK là đường trung trực của DC.
Cho tam giác ABC cân tại A, kẻ AH ⊥ BC (M ∈ BC)
a) Chứng minh △AMB = △AMC
b) Trên tia đối của tia MA lấy N sao cho MN = MA, chứng minh BM là tia phân giác của góc ABN.