Bài 2:
a) \(x+\frac{1}{3}=\frac{3}{4}\)
\(\Rightarrow x=\frac{5}{12}\)
Vậy \(x=\frac{5}{12}\)
b) \(\left|x+\frac{1}{8}\right|-\frac{1}{6}=0\)
\(\Rightarrow\left|x+\frac{1}{8}\right|=\frac{1}{6}\)
\(\Rightarrow x+\frac{1}{8}=\frac{1}{6}\) hoặc \(x+\frac{1}{8}=\frac{-1}{6}\)
+) \(x+\frac{1}{8}=\frac{1}{6}\Rightarrow x=\frac{1}{24}\)
+) \(x+\frac{1}{8}=\frac{-1}{6}\Rightarrow x=\frac{-7}{24}\)
Vậy \(x\in\left\{\frac{1}{24};\frac{-7}{24}\right\}\)
c) \(\frac{x}{27}=\frac{-2}{36}\)
\(\Rightarrow\frac{x}{27}=\frac{-1}{18}\)
\(\Rightarrow18x=-27\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy \(x=\frac{-3}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\) hoặc \(x+\frac{1}{2}=\frac{-1}{4}\)
+) \(x+\frac{1}{2}=\frac{1}{4}\Rightarrow x=\frac{-1}{4}\)
+) \(x+\frac{1}{2}=\frac{-1}{4}\Rightarrow x=\frac{-3}{4}\)
Vậy \(x\in\left\{\frac{-1}{4};\frac{-3}{4}\right\}\)
a)\(x+\frac{1}{3}=\frac{3}{4}\)
\(\Rightarrow x=\frac{3}{4}-\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{12}\)
b)\(\left|x+\frac{1}{8}\right|-\frac{1}{6}=0\)
\(\Rightarrow\left|x+\frac{1}{8}\right|=\frac{1}{6}\)
\(\Rightarrow x+\frac{1}{8}=\frac{1}{6}\) hoặc \(x+\frac{1}{8}=-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{6}-\frac{1}{8}\) hoặc \(x=-\frac{1}{6}-\frac{1}{8}\)
\(\Rightarrow x=\frac{1}{24}\) hoặc \(x=-\frac{7}{24}\)
c)\(\frac{x}{27}=-\frac{2}{36}\)
\(\Rightarrow x=\frac{\left(-2\right)\cdot27}{36}=-\frac{3}{2}\)
d)\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2=\left(-\frac{1}{4}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\) hoặc \(x+\frac{1}{2}=-\frac{1}{4}\)
\(\Rightarrow x=\frac{1}{4}-\frac{1}{2}\) hoặc \(x=-\frac{1}{4}-\frac{1}{2}\)
\(\Rightarrow x=-\frac{1}{4}\) hoặc \(x=-\frac{3}{4}\)