a) Ta có :
\(3x+1⋮2x-1\)
Mà : \(2x-1⋮2x-1\)
\(\Rightarrow\left\{{}\begin{matrix}6x+2⋮2x-1\\6x-3⋮2x-1\end{matrix}\right.\)
\(\Rightarrow5⋮2x-1\)
Vì \(x\in N\Rightarrow2x-1\in N;2x-1\inƯ\left(5\right)\)
Ta có bảng :
\(2x-1\) | \(1\) | \(5\) |
\(x\) | \(1\) | \(3\) |
\(Đk\) \(x\in N\) | \(TM\) | \(TM\) |
Vậy \(x\in\left\{1;3\right\}\) là giá trị cần tìm
b) Ta có :
\(x,y\in N\)
\(\left(x-2\right)\left(2y+1\right)=17\)
\(\Rightarrow x-2\in Z;2y+1\in N,x-2;2y+1\inƯ\left(17\right)\)
Sau đó bn lập bảng, so sánh điều kiện r kết luận thoy. Bước này bn tự làm nhs!! mk ngại
c) \(xy+x+2y=5\)
\(\left(xy+x\right)+2y+2=5+2\)
\(x\left(y+1\right)+2\left(y+1\right)=7\)
\(\left(y+1\right)\left(x+2\right)=7\)
Vì \(x,y\in N\Rightarrow y+1;x+2\in N;y+1;x+2\inƯ\left(7\right)\)
Ta có bảng :
\(x+2\) | \(1\) | \(7\) | |
\(y+1\) | \(7\) | \(1\) | |
\(x\) | \(-1\) | \(6\) | |
\(y\) | \(5\) | \(0\) | |
\(Đk\) \(x,y\in N\) | loại | TM |
Vậy....................
c, \(3x+1⋮2x-1\)
\(\Rightarrow6x+2⋮2x-1\)
\(\Rightarrow6x-3+5⋮2x-1\)
\(\Rightarrow3\left(2x-1\right)+5⋮2x-1\)
\(\Rightarrow5⋮2x-1\)
Do \(x\in N\)
\(\Rightarrow2x-1\in\left\{1;5\right\}\)
\(\Rightarrow x\in\left\{1;3\right\}\)
Vậy...
d, \(\left(x-2\right)\left(2y+1\right)=17\)
Ta có bảng sau: ( 2y + 1 là số lẻ; \(x,y\in N\) )
\(x-2\) | 1 | 17 |
\(2y+1\) | 17 | 1 |
\(x\) | 3 | 19 |
\(y\) | 8 | 0 |
Vậy cặp số \(\left(x;y\right)\) là \(\left(3;8\right);\left(19;0\right)\)
e, \(xy+x+2y=5\)
\(\Rightarrow x\left(y+1\right)+2y+2=7\)
\(\Rightarrow x\left(y+1\right)+2\left(y+1\right)=7\)
\(\Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta có bảng sau: \(\left(x;y\in N\right)\)
\(x+2\) | 1 | 7 |
\(y+1\) | 7 | 1 |
\(x\) | -1 | 5 |
y | 6 | 0 |
Vậy cặp số \(\left(x;y\right)\) là \(\left(5;0\right)\)