bài 1: thực hiện phép tính
a, (\(\frac{x+1}{x-1}-\frac{x-1}{x+1}\)) : (\(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\))
b, \(\frac{2+x}{2-x}:\frac{4x^2}{4-4x+x^2}\) . (\(\frac{2}{2-x}-\frac{4}{8+x^3}.\frac{4-2x+x^2}{2-x}\))
c, ((\(\frac{3}{x-y}+\frac{3x}{x^2+y^2}\)) : \(\frac{2x+y}{x^2+2xy+y^2}\)) . \(\frac{x-y}{3}\)
bài 2: cho biểu thức M = \(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a, tìm ĐKXĐ, rút gọn M
b, tìm x để M có giá trị nguyên
bài 1: thực hiên phép tính
a, \(\frac{x^2}{x^2-x}\)- \(\frac{x^2}{x+1}\)-\(\frac{2x}{x^2-1}\)
b, \(\frac{4x^2-3x+5}{x^3-1}\)- \(\frac{1-2x}{x^2+x+1}\)- \(\frac{6}{x-1}\)
c, \(\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
d, \(\frac{5}{x+1}-\frac{10}{x-x^2-1}-\frac{15}{x^3+1}\)
bài 2: thực hiện phép tính
a, \(\frac{1}{x+1}-\frac{2x}{x-1}+\frac{x+3}{x^2-1}\)
b, \(\frac{2}{2x+1}-\frac{1}{2x-1}+\frac{2}{4x^2-1}\)
c, \(\frac{7}{8x^2-18}+\frac{1}{2x^2+3x}-\frac{1}{4x-6}\)
d, \(\frac{3x^2+5x+14}{x^3+1}+\frac{x-1}{x^2-x+1}-\frac{4}{x+1}\)
1,Giải PT
a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
b,\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
c,\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
9, Cho biểu thức sau :
A=(\(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\) ) : \(\frac{2x+1}{x^2+2x+1}\)
a, Rút gọn biểu thức A.
b, Tính giá trị của A khi x=\(\frac{1}{2}\)
xác định các số hữu tỉ a,b,c,d sao cho:
a,\(\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{a}{x\left(x+1\right)}+\frac{b}{\left(x+1\right)\left(x+2\right)}\)
b,\(\frac{x^3}{x^4-1}=\frac{a}{x-1}+\frac{b}{x+1}+\frac{cx+d}{x^2+1}\)
c,\(\frac{2x^2-x+1}{\left(x+1\right)\left(x-2\right)^2}=\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{x-2}\)
Cho \(A=\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)
a) ĐKXĐ , Rút Gọn
b)So sánh A với 1/A
Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
Bài 1: Giải các phương trình:
a) \(x+\frac{2x-1}{1-x}=-1\)
b) \(x+\frac{1}{x}=2\)
Bài 2: Giải các phương trình:
a) \(\frac{x}{x-2}=\frac{x-2}{x-3}\)
b) \(\frac{2x-4}{x-1}-\frac{x-3}{x-2}=1\)
c) \(\frac{x+3}{x-1}-\frac{3}{X-1}+\frac{x^2-2}{1-x^2}=0\)
d) \(\frac{2x+1}{x-3}-\frac{3}{x-2}=2\)
Bài 3: Giải các phương trình sau:
a) \(\frac{2x}{x-1}-\frac{x}{x-2}=\frac{x^2}{\left(x-1\right)\left(x-2\right)}\)
b) \(\frac{1}{x+2}\frac{6}{x-1}+\frac{8}{\left(x+2\right)\left(x-1\right)}=0\)
c) \(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x+3\right)\left(x-1\right)}\)
d) \(\frac{x-1}{x+2}-\frac{x+1}{x-2}=\frac{x-3}{4-x^2}\)
thực hiện phép tính
a, \(\frac{x^2-yz}{1+\frac{y+x}{x}}+\frac{y^2-xz}{1+\frac{z+x}{y}}+\frac{z^2-xy}{1+\frac{x+y}{z}}\)
b, \(\left(1+\frac{y^2+z^2-x^2}{2yz}\right).\frac{1+\frac{x}{y+z}}{1-\frac{x}{y+z}}.\frac{y^2+z^2-\left(y-z\right)^2}{x+y+z}\)
c,\(\frac{2}{3}\left[\frac{1}{1+\frac{\left(2x+1\right)^2}{3}}+\frac{1}{1+\frac{\left(2x-1\right)^2}{3}}\right]\)