cho đường tròn tâm o. từ điểm m nằm ngoài đường tròn tâm o kẻ tiếp tuyến ma của đường tròn tâm o. từ a kẻ đường thẳng vuông góc với om cắt om và đường tron tâm o lần lượt tại h và b. chứng minh bm là tiếp tuyến đường tròn tâm o. kẻ đường kính ac, mc cắt đường tròn tâm o tại d, kẻ di vuông góc với ac, di cắt ab tại g ,gọi e là trung điểm am, chứng minh c f e thẳng hàng
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Cho đường tròn (O), đường kính AB=2R. Trên tâm O lấy điểm M(MA<MB). Tiếp tuyến tại M (O) cắt 2 tiếp tuyến tại A và B của đường tròn lần lượt tại C, D.CM:
a) CM CD=AC+BD
b)Vẽ đường thẳng MB cắt AC tại E và vẽ MH vuông AB tại H. CM OC//MB và ME.MB=AH.AB
c)HM là tia phân giác của góc CHD
Cho 2 đường tròn (O,R)và (O',R') cắt nhau tại A và B sao cho đường thẳng Oa là tiếp tuyến của đường tròn (O',R') biết R=12cm R'=5cm a,
a. cmr O'A là tiếp tuyến của đường tròn (O,R) b,
b. tính độ dài các đoạn thẳng AB
c. Trên đường thằng AB lấy điểm M ngoài đoạn thẳng AB. Vẽ các tiếp tuyến MT và MT’ kẻ từ M lần lượt đến hai đường tròn (O,R)và (O',R') (T và T’ là tiếp điểm). Chứng minh rằng MT=MT’.
Cho đường tròn (O;R), đường kính AB. Lấy điếm M thuộc đường tròn (O) (AM<BM). Tiếp tuyến tại A của đường tròn tâm O cắt tia BM tại C.
1. Cm AC^2=CM.CB
2. Tia CO cắt đường tròn (O) lần lượt tại 2 điếm D và E ( điểm D nằm giữa hai điếm C và E). Cm: CM.CB=CD.CE
3. Vẽ dây AK vuông góc CO tại H.Cm: CK là tiếp tuyến của đường tròn (O).
Cho đường tròn (O; 15cm ). Dây BC= 24cm. Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại A a/ tính khoảng cách từ tâm đến dây BC b/ chứng minh ba điểm O;A;H thẳng hàng c/ tính độ dài AB và AC
Cho đường tròn tâm O bán kính R và 1 điểm A nằm ngoài đường tròn sao cho OA = 2R . Vẽ 2 tiếp tuyến AB, AC ( B, C là các tiếp điểm ) Đường thẳng OA cắt BC tại H. Cắt cung nhỏ và cung lớn BC lần lượt tại M và N.
a) Chứng minh R2 = OA . HM
b) Vẽ cát tuyến bất kì ADE. Gọi K là điểm DE. Chứng tỏ 5 điểm A, B, O, K ,C cùng thuộc 1 đường tròn. Xác định tâm và bán kính của đường tròn đó .
c) Chứng minh AM . AN = AH . AO
Con nhớ đường cho nửa đường tròn tâm o đường kính AB =2R . Từ điểm M trên tiếp tuyến Ax của nửa đường tròn , vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Vẽ CH vuông góc với AB tại H . Đường thẳng MB cắt đường tròn tâm O tại Q và cắt CH tại N , đường thẳng MO cắt AC tại I . Cm:M,Q,I,A cùng thuộc một đường tròn b, N là trung điểm của CH
cho nửa đường tròn tâm O , đường kính AB =2R và K là một điểm tùy ý trên nửa đường tròn ( K khác A và B). kẻ hai tiếp tuyến Ax và By tại M với nửa đường tròn . Qua K kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại M và H. a/cm: MH=AM+BH và AK//OH b/ cm: AM.BH=R2 c / đường thẳng AB và MH cắt nhau tại E.cm:ME.HK=MK.HE