c: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{\left(x+3\right)\left(x+2\right)}{\left(x+3\right)\cdot2x}=\dfrac{x+2}{2x}\)
b: \(=\dfrac{x+3-x-4}{x-2}=\dfrac{-1}{x-2}\)
c: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{\left(x+3\right)\left(x+2\right)}{\left(x+3\right)\cdot2x}=\dfrac{x+2}{2x}\)
b: \(=\dfrac{x+3-x-4}{x-2}=\dfrac{-1}{x-2}\)
Bài 1:tính
a)\(\dfrac{x^2-2^{ }}{x\left(x-1\right)^2}+\dfrac{2-x}{x\left(1-x\right)^2}\)
b)\(\dfrac{3}{2x}+\dfrac{3x-3}{2x-1}+\dfrac{2x^2+1}{4x^2-2x}\)
c)\(\dfrac{x}{x-1}+\dfrac{2}{x^2+x+1}+\dfrac{4x^2-1}{1-x^3}\)
1, Thực hiện phép tính:
a, \(\dfrac{1-3x}{2}+\dfrac{x+3}{2}\)
b, \(\dfrac{2\left(x+y\right)\left(x-y\right)}{x}-\dfrac{-2y^2}{x}\)
c, \(\dfrac{3x+1}{x+y}-\dfrac{2x-3}{x+y}\)
d, \(\dfrac{xy}{2x-y}-\dfrac{x^2-1}{y-2x}\)
e, \(\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)
2, Thực hiện phép tính:
a, \(\dfrac{1}{x}.\dfrac{6x}{y}\)
b, \(\dfrac{2x^2}{y}.3xy^2\)
c, \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
d, \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
e, \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)
f, \(\dfrac{x^2-36}{2x+10}.\dfrac{3}{6-x}\)
Làm tính cộng các phân thức sau :
a) \(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{y^3}\)
b) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x\left(x+3\right)}\)
c) \(\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)
d) \(x^2+\dfrac{x^4+1}{1-x^2}+1\)
e) \(\dfrac{4x^2-3x+17}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{6}{1-x}\)
Bài 1
a) Tìm GTNN của A = \(\dfrac{2x^2-16x+43}{x^2-8x+22}\)
b) Tìm GTLN của B = \(\dfrac{3x^2+9x+17}{3x^2+9x+7}\)
Bài 2: Tìm x để phân thức có giá trị nguyên
a) \(\dfrac{-6}{3x-2}\) b) \(\dfrac{2x+3}{x-5}\) c) \(\dfrac{x^3-x^2+2}{x-1}\) d) \(\dfrac{2x^3+x^2+2x+2}{2x+1}\) e) \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)
Bài 3: Cho biểu thức
A= \(\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x^2+10x}\)
a) Rút gọn b) Tìm x để A = 1; A = 3
Bài 4: Cho x + y + z = 0, tính
P= \(\dfrac{x^2}{y^2+z^2-x^2}+\dfrac{y^2}{z^2+x^2-y^2}+\dfrac{z^2}{x^2+y^2-z^2}\)
a)\(\dfrac{2}{x+3}+\dfrac{1}{x}\)
b)\(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}\)
c)\(\dfrac{y-12}{6y-36}+\dfrac{6}{y^2-6y}\)
d)\(\dfrac{6+x}{x+3x}+\dfrac{3}{2x+6}\)
Làm tính cộng các phân thức :
a) \(\dfrac{11x+13}{3x-3}+\dfrac{15x+17}{4-4x}\)
b) \(\dfrac{2x+1}{2x^2-x}+\dfrac{32x^2}{1-4x^2}+\dfrac{1-2x}{2x^2+x}\)
c) \(\dfrac{1}{x^2+x+1}+\dfrac{1}{x^2-x}+\dfrac{2x}{1-x^3}\)
d) \(\dfrac{x^4}{1-x}+x^3+x^2+x+1\)
Dùng quy tắc đổi dấu để tìm mẫu thức chung rồi thực hiện phép cộng :
a) \(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x-6}{4-x^2}\)
b) \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
c) \(\dfrac{1}{x^2+6x+9}+\dfrac{1}{6x-x^2-9}+\dfrac{x}{x^2-9}\)
d) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
e) \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)
Cộng các phân thức cùng mẫu thức :
a) \(\dfrac{1-2x}{6x^3y}+\dfrac{3+2y}{6x^3y}+\dfrac{2y-4}{6x^3y}\)
b) \(\dfrac{x^2-2}{x\left(x-1\right)^2}+\dfrac{2-x}{x\left(x-1\right)^2}\)
c) \(\dfrac{3x+1}{x^2-3x+1}+\dfrac{x^6-6x}{x^2-3x+1}\)
d) \(\dfrac{x^2+38x+4}{2x^2+17x+1}+\dfrac{3x^2-4x-2}{2x^2+17x+1}\)
1, Thực hiện phép tính :
a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)
b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)
c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)
d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)
e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)
f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)
g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)
h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)
i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)
2, Thực hiện phép tính :
a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)
b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)
c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)
d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)
Rút gọn:
a)\(\dfrac{2}{2x+1}-\dfrac{1}{2x-1}+\dfrac{4}{4x^2-1}\)
b)\(\dfrac{4x^2-3x+5}{x^3+1}-\dfrac{1-2x}{x^2+x+1}-\dfrac{6}{x-1}\)