Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400
a) Tính góc AOB
b) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cân
Bài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn , nó cắt Ax , By lần lượt tai C và D
a) chứng minh : Tam giác COD là tam giác vuông
b)Chứng minh : MC.MD=OM2
c) Cho biết OC=BA=2R, tính AC và BD theo R
Bài 3 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài với nhau tại B. Vẽ đường kính AB của đường tròn (O) và đường kính BC của đường tròn (O'). Đường tròn đường kính OC cắt (O) tại M và N
a)Đường thẳng CM cắt (O') tại P Chứng minh : OM\(//\)BP
b) Từ C kẽ đường thẳng vuông góc với CM cắt tia ON tại D . Chứng minh : Tam giác OCD là tam giác cân
Câu 2:
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)
b: Xét ΔCOD vuông tại O có OM là đường cao
nên \(OM^2=MC\cdot MD\)
c: \(AC=\sqrt{CO^2-AO^2}=R\sqrt{3}\)