\(\sqrt {\dfrac{2}{{9 - x}}}\) có nghĩa khi \(\left\{ \begin{array}{l} \dfrac{2}{{9 - x}} \ge 0\\ 9 - x \ne 0 \end{array} \right. \Leftrightarrow 9 - x > 0 \Leftrightarrow - x > - 9 \Leftrightarrow x < 9\)
\(\sqrt {{x^2} + 2x + 1} \) có nghĩa khi: \({x^2} + 2x + 1 = {\left( {x + 1} \right)^2} > 0\forall x \in R\)
\(\sqrt{9-x^2}\) có nghĩa khi: \(9 - {x^2} \ge 0 \Leftrightarrow - {x^2} \ge - 9 \Leftrightarrow {x^2} \le 9 \Leftrightarrow \left| x \right| \le 9\)
\(\Leftrightarrow x\ge3\) hoặc \(x\ge-3\)
\(\sqrt {\dfrac{1}{{{x^2} - 4}}} \) có nghĩa khi: \(\left\{ \begin{array}{l} \dfrac{1}{{{x^2} - 4}} \ge 0\\ {x^2} - 4 \ne 0 \end{array} \right. \Leftrightarrow {x^2} - 4 > 0 \Leftrightarrow \left| x \right| > 4\)
\(\Leftrightarrow x>2\) hoặc \(x>-2\)