a) \(x^n.x^{2\left(n+1\right)}\)
= \(x^{n+2.\left(n+1\right)}=x^{n+2n+2}=x^{3n+2}\)
b) \(x^{n+3}.x^{2-n}=x^{n+3+2-n}=x^5\)
c) \(\left(-\dfrac{1}{3}x^{n+2}\right).\left(-3x^{n-1}\right)\)
= \(-x^{n+2+n-1}=-x^{2n+1}\)
d) \(\left(-\dfrac{1}{\dfrac{1}{2x^2y^3}}\right)^2\)
= \(\left(-1.\dfrac{2x^2y^3}{1}\right)^2=\left(-2x^2y^3\right)^2=4x^4y^6\)
e) \(\left(-0,1x^3y\right)^3=-0,001x^9y^3\)