a: \(30^{12}=5^{12}\cdot6^{12}\)
\(25^6\cdot6^{12}=5^{12}\cdot6^{12}\)
Do đó: \(30^{12}=25^6\cdot6^{12}\)
b: \(40^3=\left(2^3\cdot5\right)^3=2^9\cdot5^3\)
\(125\cdot2^{10}=5^3\cdot2^{10}\)
mà 9<10
nên \(40^3< 125\cdot2^{10}\)
c: \(333^{222}=\left(333^2\right)^{111}=110889^{111}\)
\(222^{333}=\left(222^3\right)^{111}=10941048^{111}\)
mà 110889<10941048
nên \(333^{222}< 222^{333}\)