Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
MNNT
Bài 1: Cho tam giác cân DEF cân tại D. Gọi N và M lần lượt là trung điểm của DE và DF, kẻ DH vuông góc với EF tại H a. CMR góc EDH=góc FDHb. CMR EM=FNc. Giả sử DE=DF=5cm, EF=8cm. Tính DHd. CMR MN song song EFCẦN GẤP Ạ 
Nguyen Quynh Huong
8 tháng 4 2021 lúc 20:12

A) XÉT ΔDHE VÀ ΔDHF, CÓ

DE=DF (ΔDEF CÂN TẠI D)

\(\widehat{E}=\widehat{F}\) (ΔDEF CÂN TẠI D)

⇒ ΔDHE = ΔDHF (C.HUYỀN-G.NHỌN)

\(\widehat{EDH}=\widehat{FDH}\) (2 GÓC T.ỨNG)

 

 

Nguyen Quynh Huong
8 tháng 4 2021 lúc 21:42

TA CÓ : EN=\(\dfrac{1}{2}\)DE 

MÀ : DE=DF

⇒EN=FM                                                                  B) XÉT ΔNEF VÀ ΔMFE CÓ

EF: CHUNG

\(\widehat{E}=\widehat{F}\)( TAM GIÁC DEF CÂN TẠI D)

EN=FM (CMT)

⇒ΔNEF = ΔMFE (C-G-C)

⇒EM=FN (2 CẠNH TƯƠNG ỨNG)

C) TA CÓ : EH=FH (ΔDHE=ΔDHF)

MÀ : EF=8

⇒DH LÀ TRUNG ĐIỂM CỦA EF

⇒EH=\(\dfrac{1}{2}EF\) = \(\dfrac{1}{2}\) .8 = 4

⇒EH=4 

TRONG ΔDHE VUÔNG TẠI H

\(DE^2=HE^2+DH^2\) (ĐỊNH LÝ PTG)

\(5^2=4^2+DH^2\)

\(DH^2\)=25-16

\(DH^2\) = 9

⇒DH=\(\sqrt{9}\)=3

 

Nguyen Quynh Huong
8 tháng 4 2021 lúc 22:00

D) TA CÓ : DN=\(\dfrac{1}{2}\)DE

DM=\(\dfrac{1}{2}\)DF

MÀ : DE=DF

⇒DN=DM

⇒ΔDNM CÂN TẠI D

TA CÓ : \(\widehat{D}+\widehat{N}+\widehat{M}=180\)

MÀ: \(\widehat{M}=\widehat{N}\)

\(\widehat{D}+\widehat{2N}=180\)

\(\widehat{N}=\dfrac{180-\widehat{D}}{2}\)

TA CÓ : \(\widehat{D}+\widehat{E}+\widehat{F}\) =180

MÀ : \(\widehat{E}=\widehat{F}\)

\(\widehat{D}+\widehat{2E}=180\)

\(\widehat{E}=\dfrac{180-\widehat{D}}{2}\)

\(\widehat{DNM}=\widehat{DEF}\) (ĐỒNG VỊ)

⇒MN//EF


Các câu hỏi tương tự
Khánh Vân Phạm
Xem chi tiết
Lương Lê Minh Hằng
Xem chi tiết
Nguyễn Thị Tú Phương
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết
Xem chi tiết
Xem chi tiết
Tâm Đỗ
Xem chi tiết
Hanna08
Xem chi tiết
Phan Tiến Đạt
Xem chi tiết