Ôn tập: Phương trình bâc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Haruno Sakura

Bài 1 :cho phương trình (ẩn x):\(x^3+ax^2-4x-4=0\)

a. Xác định a để phương trình có một nghiệm \(x\)=1

b. Với giá trị a vừa tìm được , tìm các nghiệm còn lại của phương trình .

Bài 2:Tìm các giá trị của m sao cho phương trình :

a)\(12-2\left(1-x^2\right)=4\left(x-m\right)-\left(x-3\right)\left(2x+5\right)\)có nghiệm \(x\)=3

b)\(\left(9x+1\right)\left(x-2m\right)=\left(3x+2\right)\left(3x-5\right)\)có nghiệm \(x=1\)

Nhã Doanh
7 tháng 4 2018 lúc 22:11

Bài 1:

a.

Thay x = 1 là nghiệm của pt, ta được:

\(1^3+a.1^2-4.1-4=0\)

\(\Leftrightarrow1+a-4-4=0\)

\(\Leftrightarrow1+a-8=0\)

\(\Leftrightarrow a-7=0\)

\(\Leftrightarrow a=7\)

b.

Với a = 7 ta được:

\(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow x^3-x^2+8x^2-8x+4x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2+8x+4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+8x+4=0\end{matrix}\right.\)

Ta có:

\(x^2+8x+4=x^2+2.x.4+4^2-12\)

\(=\left(x+4\right)^2-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)

Vậy. \(\left[{}\begin{matrix}x=1\\x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Nguyễn Mai Thùy Linh
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đin Nam Khánh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Thị Tú Anh 8B
Xem chi tiết