a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
b: Ta có: ΔOAC=ΔOBC
nên AC=BC
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
b: Ta có: ΔOAC=ΔOBC
nên AC=BC
Bài 2: (Vẽ hình) Cho \(\widehat{xOy}\). Trên tia \(Ox\) lấy điểm \(A\), trên tia \(Oy\) lấy điểm \(B\) sao cho \(OA=OB\). Gọi \(C\) là 1 điểm trên tia phân giác \(Oz\) của \(\widehat{xOy}\). Chứng minh rằng:
a, \(AC=BC\)
\(\widehat{xAC}=\widehat{yBC}\)
b, \(OC=OB\)
cho góc xOy . Trên tia Ox lấy điểm A , trên tia Oy lấy điểm B sao cho OA = OB . Gọi K Là Giao Điểm Của AB với tia phân giác của góc xOy . Chứng Minh Rằng
a) AK = KB
b) OK vuông góc với AB
Cho góc nhọn xoy .trên tia đối của tia ox lấy điểm a,trên tia đối của tia oy lấy điểm b sao cho oa=ob.trên tia ax lấy điểm c,trên tia by lấy điểm d sao cho ac=bd và ob<od,oa<oc
a) Chứng minh ad=bc
b) gọi e là giao điểm của advà bc.chứng minh tam giác eac= tam giác ebd
Cho tia xOy , Oz là tia phân giác của góc xOy . Điểm M nằm trên tia Ox, điểm N trên tia Oy sao cho OM= ON . a, chứng minh tam giác OMP= tam giác ONP. b, Gọi H là giao điểm của MN và OP, chứng minh MN vuông góc với OP
Bài 2. Cho góc xAy. Lấy điểm B trên Ax, điểm D trên Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh AABC = AADE
Bài 3. Cho góc nhọn xOy và tia Oz là tia phân giác của góc xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Lấy điểm I thuộc tia Oz Chứng minh rằng a) AAOI = ABOI b) AB 1 OI
Bài 4. Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao cho AD = AC a) Chứng minh ABAC = ABAD b) Trên tia đối của tia AB lấy điểm M. Chứng minh AMBD = AMBC
Cho tam giác ABC nhọn (AB<AC). Gọi D; E lần lượt là trung điểm của AB; AC. Trên tia đối của tia ED lấy điểm F sao cho ED = EF. Chứng minh: tam giác BDC = tam giác FCD; DE song song BC
Cho góc xoy, lấy góc A thuộc ox , B thuộc oy . Sao cho OA=OB, lấy c thuộc tia phân giác Om
a/Chứng minh △AOM=△OBM
b/ Chững minh AC=BC
C/ Chứng minh Om là đường trung trực của AB
Bài 1: Cho góc xOy nhọn có Oz là phân giác . Lấy A e tia Ox ; B e tia Oy sao cho OA = OB . Lấy C e tia Oz
a) C/m AC = CB
b) Gọi I là giao của AB với OC . C/m AB ⊥ Oc tại I
Bài 2: Cho góc xOy ∠ 90* . Trên tia Ox lấy A và C , trên tia Oy lấy B và D sao cho OA = OB ; OC = OD (A nằm giữa O và C )
a) Gọi I là giao của AD với BC . C/m Oy là phân giác của xOy