Bài 1:
a) \(2^x+2^{x+3}=144\)
\(\Leftrightarrow 2^x+2^3.2^x=144\Leftrightarrow 2^x(1+2^3)=144\)
\(\Leftrightarrow 2^x=16\Leftrightarrow 2^x=2^4\Rightarrow x=4\)
b)
\(3^{2x+2}=9^{x+3}\)
\(\Leftrightarrow 3^{2x+2}=(3^2)^{x+3}=3^{2(x+3)}\)
\(\Rightarrow 2x+2=2(x+3)\Leftrightarrow 2=6\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn.
Bài 2:
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow 3A=3^2+3^3+3^4+..+3^{101}\)
Trừ theo vế:
\(3A-A=3^{101}-3\)
\(\Rightarrow 2A=3^{101}-3\)
Khi đó:
\(2A+3=3^n\Leftrightarrow 3^{101}-3+3=3^n\Leftrightarrow 3^{101}=3^n\)
\(\Rightarrow n=101\)