b) \(3.2^{x+1}=12\)
\(2^{x+1}=12:3\)
\(2^{x+1}=4\)
\(2^{x+1}=2^2\)
\(x+1=2\)
\(x=2-1\)
\(x=1\)
Vậy \(x=1\)
c) \(2^{x-1}=2^3+2^4-2^3\)
\(2^{x-1}=8+16-8\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
Vậy \(x=5\)
d) \(x^{50}=x\)
\(x^{50}-x=0\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
\(b.3.2^{x+1}=12\\ \Rightarrow2^{x+1}=4\\ \Rightarrow2^{x+1}=2^2\\ \Rightarrow x=1\\ \)
c) \(2^{x-1}=2^3-2^3+2^4\\ \Rightarrow2^{x-1}=0+16\\ \Rightarrow2^{x-1}=16\\ \Rightarrow2^{x-1}=2^4\\ \Rightarrow x-1=4\\ \Rightarrow x=5\)
d) \(x^{50}=x\\ \Rightarrow x=0;1\)
e) \(2\left(2x-1\right)^4=32\\ \Rightarrow\left(2x-1\right)^4=16\\ \Rightarrow\left(2x-1\right)^4=2^4\\ \Rightarrow2x-1=2\\ \Rightarrow2x=3\\ \Rightarrow x=\frac{3}{2}\)
g) Bí